Instytut Nafty i Gazu - Państwowy Instytut Badawczy

TYTUŁ: Polish shale formation evaluation based on chemical and isotope composition of natural gas / Ocena polskich formacji łupkowych na podstawie składu chemicznego i izotopowego gazu ziemnego

 

Autor: Marek Janiga

 

 

Recenzenci:

Prof. dr hab. Zdzisław Migaszewski, Uniwersytet Jana Kochanowskiego
Dr hab. Sławomir Kędzior, Uniwersytet Śląski

 

 

 

PN-241 400

ISSN 2353-2718
ISBN 978-83-65649-49-2
DOI: 10.18668/PN2024.241

Objętość monografii: 116 stron

Streszczenie

Skład chemiczny i izotopowy gazu zmienia się wraz termiczną dojrzałością źródłowej substancji organicznej. Suchy gaz biogeniczny o bardziej ujemnych wartościach δ¹³C przechodzi w gaz mokry okna ropnego, a następnie w suchy gaz okna gazowego o wartościach δ¹³C zbliżających się do zera. Dla gazów z formacji łupkowych zależności te są identyczne, a analizy składu chemicznego i izotopowego gazu z formacji łupkowych są wykorzystywane do typowania obszarów perspektywicznych tzw.: „sweet spots”.
Celem pracy było znalezienie parametrów i ich wartości, na podstawie składu chemicznego i izotopowego, oznaczających prawdopodobne wystąpienie „sweet spot”. W tym celu wykorzystano wyniki analiz gazu z pięciu odwiertów poszukiwawczych z północy Polski. W pracy przedstawiono wyniki analiz składu chemicznego i izotopowego gazów ziemnych oraz wyniki analiz geochemicznych Rock-Eval z pięciu odwiertów eksplorujących formacje łupkowe syluru i ordowiku. Analizy statystyczne przeprowadzono z wykorzystaniem statystyki opisowej, korelacji i regresji liniowej. Wykorzystując wszystkie wyniki jako jedną populację statystyczną, obliczono współczynniki korelacji liniowej Pearsona dla składu izotopowego poszczególnych węglowodorów gazu ziemnego z parametrami pirolitycznymi i wskaźnikami wyliczonymi na podstawie składu chemicznego. Korelacje pomiędzy parametrami pirolitycznymi a składem izotopowym lub wskaźnikami chemicznymi nie są wysokie. Przykładowo umiarkowane korelacje występują pomiędzy dojrzałością termiczną źródłowej materii organicznej (Tmax) a składem izotopowym węgla w metanie (r = 0,63).
Wyniki analiz składu izotopowego węgla wyraźnie różnicują próbki z każdego odwiertu (poza gazami z odwiertów L-1 i O-2). Wartości δ¹³C metanu, etanu i propanu są progresywnie wyższe w sekwencji L-1, O-2, K-1, B-1 i W-1. Dojrzałość termiczną źródłowej materii organicznej oceniono wykorzystując model matematyczny Tanga uwzględniający również udziału metanu biogenicznego. Dojrzałość termiczna odpowiada głównie zakresowi od 0,9% (L-1 i O-2) do 1,5% (B-1 i W-1) w skali refleksyjności witrynitu. Skład wszystkich gazów ziemnych wskazuje na mieszanie z gazem biogenicznym (udział biometanu w gazie poniżej około 25%).

Odchylenie wartości δ¹³C metanu w kierunku bardziej ujemnych we wszystkich próbkach również potwierdziło mieszanie z gazem biogenicznym (graficzny model Chunga tzw.: „natural gas plot”). Także wartości składu izotopowego węgla etanu i propanu odbiegały od teoretycznych (zwłaszcza w odwiertach W-1 i B-1; nieco mniej w odwiertach O-2 i K-1). Potwierdza to występowanie wtórnego krakingu.
W najbardziej produktywnych złożach gazu łupkowego występuje zwykle inwersja składu izotopowego węgla metanu, etanu i propanu (tzw.: „roll-over effect”). W analizowanych gazach zjawisko to nie wystąpiło, ale dostrzegalne są zmiany w różnicach (δ¹³C-C₃ - δ¹³C-C₂) i (δ¹³C-C₂ - δ¹³C-C₁). Wykorzystanie wykresu zestawiającego obydwie te różnice uznano za najlepszy sposób przedstawienia wyników przy omawianiu zjawiska wtórnego krakingu, który może prowadzić do inwersji składu izotopowego. Dla wszystkich próbek różnica między etanem i metanem (δ¹³C-C₂ - δ¹³C-C₁) stale maleje wraz ze wzrostem dojrzałości termicznej. Różnica propanu i etanu (δ¹³C-C₃ - δ¹³C-C₂) wzrasta przy niższych dojrzałościach termicznych (do około 1,5% VRo) i maleje przy wyższych wartościach termicznej dojrzałości. Wykorzystując wyniki analiz składu chemicznego gazów obliczono wskaźniki C₁/C₂+₃, C₂/C₃, i-C₄/n-C₄ oraz i-C₅/n-C). Wskaźniki te są cennym źródłem informacji o gazie ziemnym,
pozwalając uniknąć wpływu sposobu poboru i rodzaj odwiertu na skład chemiczny gazu. Podobnie jak przy wynikach analiz składu izotopowego, próbki różnicują się i tworzą sekwencję L-1 i O-2, K-1, B-1 i W-1.
Głównym celem pracy było wybranie parametrów/wskaźników i ich wartości determinujących strefy perspektywiczne w formacjach łupkowych. Wykorzystując skład gazów z odwiertu W-1 (najwyższa dojrzałość termiczna źródłowej materii organicznej) oraz dane referencyjne z formacji Barnett określono przybliżone wartości składu izotopowego metanu, etanu i propanu oraz wskaźników C₁/C₂+₃, i-C₄/n-C₄ i i-C₅/n-C₅ przy których można spodziewać się wystąpienia „sweet spots”.


Słowa kluczowe: formacje łupkowe, gaz ziemny, gaz z łupków, skład izotopowy węgla, skład chemiczny

Abstract

The relationship between the change of carbon isotope composition of gaseous hydrocarbons in natural gas and the increase of source rock organic matter thermal maturity are especially important in the petroleum geochemistry. The thermal maturity evaluation and interpretation based on the chemical and isotope compositions is commonly performed for natural gases conventional reservoirs, shales, coals, seeps and other geological habitats. The carbon isotope composition of individual hydrocarbons in gas samples provided by the compound specific isotope analysis (CSIA) can be used for interpretation and correlation purposes. On the basis of the δ¹³C value of methane, ethane and propane, the estimation of thermal transformation degree of the source rock (from which the gas was generated) can be made.
In this work, organic geochemistry methods (chemical and isotope composition of gas and pyrolysis indices) are used for the shale petroleum system evaluation and to find the values of parameters determining the sweet spot. The case study of five exploration wells located in the north of Poland is presented and discussed.

The work presents results of chemical/isotope composition analyses of natural gases and geochemical Rock-Eval analyses from five wells exploring the Silurian and the Ordovician shale formations. The statistical analyses were conducted with the use of the following: descriptive, correlation and liner regression. Using all the results as one statistical population, Pearson’s linear correlation coefficients of the gas isotope composition with the pyrolytic and molecular indices were calculated. Surprisingly, there are no high correlations between the pyrolytic indices and the isotope composition or the chemical indices. Moderate correlations are between maturity of the source organic matter (Tmax) and the isotope composition of carbon in methane (r = 0.63). The results of carbon isotope analyses clearly differentiate samples from each well, only L-1 and O-2 wells natural gases are quite similar. Methane, ethane and propane δ¹³C values are progressively higher in sequence L-1, O-2, K-1, B-1 and W-1. The thermal maturity of the source organic matter was assessed using Tang’s mathematical model including the share of biogenic methane. The thermal maturity corresponds mainly to the range from 0.9% (L-1 and O-2) to 1.5% (B-1 and W-1) vitrinite reflectance. Natural gas compositions shows mixing with the biogenic gas (below approximately 25%).
A noticeable drift of methane towards negative values in all wells samples confirmed mixing with biogenic gas (with the use of the natural gas plot - Chung plot). Values of the isotope composition of ethane and propane were also skewed (especially in W-1 and B-1; a little less in O-2 and K-1 wells). This confirmed the occurrence of secondary cracking. The inversion of the isotope composition of carbon in methane, ethane and propane (the roll-over effect) does not occur in analysed gases. Usage of the diagram (δ¹³C-C₃ - δ¹³C-C₂) vs (δ¹³C-C₂ - δ¹³C-C₁) is considered to be the best way of presenting of the isotope data. For all samples, the difference between ethane and methane (δ¹³C-C₂ - δ¹³C-C₁) is constantly decreasing with an increase of thermal maturity. The propane and ethane difference (δ¹³C-C₃ - δ¹³C-C₂) is increasing at lower thermal maturities (to approximately 1,5% VRo), and decreasing with higher values of maturity. This suggests presence of the secondary cracking, resulting in the sweet spot occurrence.
Using the hydrocarbon composition, molecular indices were calculated (C₁/C₂+₃, C₂/C₃, i-C₄/n-C₄ and i-C₅/n-C₅). These indices are a valuable source of information about natural gas, whose complete composition analyses can be affected by the manner of taking a sample and the type of well. Similarly to the isotope composition the samples plot progressively in sequence L-1 and O-2, K-1, B-1 and W-1.
The main aim of this work was to establish the values of chemical and isotope composition parameters determining sweet spots. Using the composition of gases from W-1 well (the highest thermal maturity of the source organic matter) and the Barnett reference data, approximate values at which prospective levels can be expected were defined.


Keywords: Shale formations, natural gas, shale gas, carbon isotope composition, chemical composition

  

Cena egzemplarza: 60 zł netto (plus 5% VAT)

Zamówienia prosimy składać e-mailowo: nafta-gaz@inig.pl lub telefonicznie 12 617 76 32.

 

 

TYTUŁ: Poprawa oczyszczenia przestrzeni pierścieniowej otworu wiertniczego przed zabiegiem cementowania/Improvement of the cleaning of the annular space of the borehole before the cementing operations

 

 

Autorzy: Marcin Kremieniewski, Miłosz Kędzierski, Marcin Rzepka
pod redakcją Marcina Kremieniewskiego

 

 

Recenzenci:
Dr inż. Alfons Dudek
Prof. dr hab. inż. Stanisław Stryczek

 

 

 

Praca Naukowa INiG - PIB Nr 220

ISBN: 978-83-65649-26-3
ISSN: 2353-2718
DOI: 10.18668/PN2018.220

Streszczenie


Podczas realizacji prac związanych z uszczelnieniem kolumny rur okładzinowych jednym z najistotniejszych aspektów jest zapewnienie szczelności w przestrzeni pierścieniowej pomiędzy kolumnami rur oraz poza nimi. Niezachowanie tego warunku może skutkować poważnymi konsekwencjami począwszy od wzrostu ciśnienia w górnej części otworu, a skończywszy na migracji bądź ekshalacji gazu. W celu wyeliminowania takich niepożądanych zjawisk należy uszczelnić kolumnę rur okładzinowych tłocząc zaczyn cementowy. Jednak na odpowiednie uszczelnienie przestrzeni pierścieniowej składa się również przygotowanie otworu do cementowania poprzez dokładnie jego oczyszczenie. W tym celu następuje przetłoczenie cieczy przemywającej, a następnie płuczka wypierana jest przez ciecz buforową i zaczyn cementowy. Odpowiednie przygotowanie przestrzeni pierścieniowej przyczynia się do znacznej poprawy uszczelnienia i umożliwia wyeliminować powstawanie mikroprzepływów gazu na kontakcie płaszcza cementowego z powierzchnią przewiercanej wcześniej formacji skalnej oraz powierzchnią zapuszczanej rury okładzinowej.


W książce przedstawione zostały mechanizmy przepływu cieczy w przestrzeni pierścieniowej otworu wiertniczego oraz omówiono zagadnienia dotyczące działania środków przemywających na poprawę efektywności oczyszczenia przestrzeni pierścieniowej przed zabiegiem cementowania. Opisana została innowacyjna metodyka badań efektywności usuwania osadu płuczkowego. Zaprezentowano również nowe, skonstruowane w INiG – PIB urządzenie (symulator przepływu cieczy wiertniczych), które pozwalało na realizację prac badawczych w zakresie skuteczności działania cieczy przemywających. Omówiono wyniki badań wpływu czasu kontaktu oraz prędkości przepływu cieczy przemywającej na skuteczność usuwania osadu płuczkowego z formacji skalnej oraz z powierzchni rur okładzinowych. Przedstawiono również badania nad opracowaniem nowych cieczy przemywających oraz hybrydowej cieczy przemywającej, która wykazywała dwufunkcyjny charakter usuwania osadu (chemiczny oraz mechaniczny).


Omawiana problematyka realizowanych prac badawczych w znacznym stopniu przyczynia się do poprawy oczyszczenia przestrzeni pierścieniowej otworu wiertniczego przed zabiegiem cementowania, a tym samym do ograniczenia migracji i ekshalacji gazu w otworach wiertniczych.


Słowa kluczowe
Ciecz przemywająca, ciecz buforowa, oczyszczenie przestrzeni pierścieniowej, ciecz hybrydowa, przestrzeń pierścieniowa, otwór wiertniczy, zabieg cementowania otworu wiertniczego, szczelność otworu, migracja gazu, środki powierzchniowo czynne, surfaktanty, środki ścierne, dodatki drobnoziarniste


Abstract


During the implementation of works related to the sealing of the casing string, one of the most important aspects is to ensure tightness in the annular space between the casing and beyond. Failure to comply with this condition may result in serious consequences, ranging from pressure increase in the upper part of the hole, to migration or gas exhalation. In order to eliminate such undesirable phenomena, the casing column should be sealed by pumping the cement slurry. However, the proper sealing of the annular space also consists in preparing the borehole for the cementing operations by thoroughly cleaning it. For this purpose, a preflush fluid is pumped into the hole, and the drilling mud is displaced by a spacer fluid and cement slurry. Appropriate preparation of the annular space contributes to a significant improvement of the sealing and allows to eliminate the formation of gas microflows on the contact of the cement sheath with the surface of the previously drilled rock formation and the surface of the casing string.


This book presents the mechanisms forming the liquid flow in the annular space of the borehole and discusses the issues concerning the action of washing agents to improve the efficiency of cleaning the annular space before the cementing operations. It presents an innovative methodology for the effectiveness of removal of mud cake. It also presents, a new device (a simulator of the flow of drilling fluids), constructed in The Oil and Gas Institute – National Research Institute, which allowed to carry out research work in the field of the effectiveness of washing fluids. The results of the influence of contact time and flow rate of the preflush fluid on the efficiency of removing the mud cake from the rock formation and the surface of the casings were discussed. Also presented are Laboratory tests on the development of a new types of washing fluids and a hybrid preflush fluid, which showed a dual-purpose character of filter cake removal (chemical and mechanical).

The discussed issues of conducted research work significantly contribute to the improvement of the purification of the annular space of the borehole before cementing operations, and thus to the reduction of gas migration and exhalation in wellbores.

Key words
Preflush fluid, spacer fluid, cleaning of the annular space, hybrid preflush fluid, annular space, borehole, wellbore cementing operations, borehole tightness, gas migration, surfactants, abrasives, fine-grain additives

 

  

Cena egzemplarza:60 zł netto (plus 5% VAT)

Koszt przesyłki: 5 zł brutto za sztukę – list polecony

Zamówienia prosimy składać e-mailowo: nafta-gaz@inig.pl lub telefonicznie 12 617 76 32.

 

 

 

 

 

 
 

TYTUŁ: Zwiększenie dokładności odwzorowania ośrodka geologicznego z wybranego obszaru Karpat zewnętrznych na podstawie reprocessingu archiwalnych profili sejsmicznych 2D /  Improvement of the accuracy of the geological survey imaging in seismic waveform in the Outer Carpathians area based on reprocessing of archival 2D seismic profiles

 

 

Autorzy: Łukasz Bajewski, Aleksander Wilk, Robert Bartoń, Andrzej Urbaniec

 

 

Recenzenci:
dr inż. Anna Kwietniak
prof. dr hab. inż. Ryszard Ślusarczyk

 

 

 

Praca Naukowa INiG - PIB Nr 222

ISBN: 978-83-65649-28-7
ISSN: 2353-2718
DOI: 10.18668/PN2018.222

Streszczenie

Głównym celem prezentowanej pracy było uzyskanie obrazu sejsmicznego na podstawie reprocessingu archiwalnych profili sejsmicznych 2D – który to obraz pozwoliłby na bardziej szczegółowe i jednoznaczne odwzorowanie skomplikowanej budowy geologicznej Karpat zewnętrznych w stosunku do wcześniejszych badań – poprzez opracowanie procedur i sekwencji przetwarzania oraz dobór parametrów, z wykorzystaniem wszelkich dostępnych danych i z jednoczesną interpretacją geologiczną. Dotychczas uzyskane rezultaty prac w zakresie przetwarzania, realizowane zarówno w przemyśle, jak i jednostkach naukowych, nie dają jednoznacznego odwzorowania skomplikowanej budowy geologicznej tego obszaru.


Do realizacji tego zadania wybrano dwa profile sejsmiczne usytuowane w południowo-wschodniej Polsce. Przetwarzanie sejsmiczne prowadzono w systemie SeisSpace (ProMAX) – Seismic Processing and Analysis Release 5000.10.0.1. firmy Halliburton. Analizowany rejon cechuje się dużym stopniem skomplikowania budowy geologicznej ze względu na obecność licznych stref nasunięć w obrębie utworów jednostek karpackich i miocenu sfałdowanego, jak również występowanie kilku dużych stref dyslokacyjnych o różnych kierunkach przebiegu.


Praca była realizowana w dwóch etapach. W pierwszym testowano wszelkie dostępne algorytmy w systemie SeisSpace (ProMAX) oraz wszelkie możliwe warianty sekwencji przetwarzania z jak najszerszym wachlarzem parametrów. W drugim etapie, ze względu na występującą anizotropię w tak skomplikowanych ośrodkach geologicznych, postanowiono również uwzględnić wyniki, wraz z ich interpretacją, z pionowych profilowań sejsmicznych (PPS) w zakresie zmian pola prędkości. Ostatecznie wypracowano metodykę przetwarzania migracji po składaniu (poststack time migration), w której efekcie odwzorowanie modelu geologicznego na sekcji sejsmicznej jest bardziej szczegółowe i jednoznaczne niż uzyskane dotąd rezultaty. Osiągnięty efekt budzi optymizm, gdyż pomimo tego, że proces migracji obejmował podstawową jej realizację, uzyskano lepszy efekt niż istniejący dotychczas.


Obecnie wykonywane są dodatkowe prace w wersji migracji czasowej przed składaniem (preSTM) oraz depth imaging mające na celu uzyskanie jeszcze lepszych rezultatów, których wyniki zostaną przedstawione w odrębnych publikacjach.


Abstract

The main objective of the presented work, was to obtain a seismic image based on the reprocessing of archival 2D seismic profiles, which would allow a more detailed and unambiguous representation of the complex geological structure of the Outer Carpathians compared to earlier results, through the development of procedures and processing sequences and the selection of parameters, using all available data and simultaneous geological interpretation. The previous results of work in the field of processing, implemented both in industry and scientific units, do not provide a clear representation of the complex geological structure of this area.


Two seismic profiles located in south-eastern Poland, were selected for this task. Seismic processing was carried out in the SeisSpace (ProMAX) system – Seismic Processing and Analysis Release 5000.10.0.1. of Halliburton company. The analyzed region is characterized by a high degree of complexity of the geological structure, due to the presence of numerous overlap zones within the Carpathian units and folded Miocene, as well as the presence of several large dislocations with different directions.


The work was carried out in two stages. In the first stage, all available algorithms were tested in the SeisSpace (ProMAX) system and all possible variants of the processing sequences with the widest possible range of parameters. In the second stage, due to the occurring anisotropy in such complex geological environment, it was also decided to take into account the results, along with their interpretation of vertical Seismic Profiling (VSP) in the range of velocity field changes. Finally, the poststack time migration methodology was developed, in which the image of the geological model on the seismic section is more detailed and unambiguous than the results obtained so far. The achieved effect is optimistic, because, despite the fact that the migration process included its basic implementation, a better effect than that obtained so far has been achieved. Currently, additional work is being done in the time migration version before stack (preSTM), and depth imaging, aimed at obtaining even better results whose results will be presented in separate publications.

  

Cena egzemplarza:60 zł netto (plus 5% VAT)

Koszt przesyłki: 5 zł brutto za sztukę – list polecony

Zamówienia prosimy składać e-mailowo: nafta-gaz@inig.pl lub telefonicznie 12 617 76 32.

 

 

 

 

 

 
 

TYTUŁ: Innowacyjna technologia zestalania zużytych płuczek wiertniczych / Innovative technology of used drilling muds solidification

 

 

Autorzy: Teresa Steliga, Małgorzata Uliasz

 

 

Recenzenci:
prof. dr hab. Elżbieta Bielińskak
prof. dr hab. inż. Stanisław Stryczek

 

 

 

PN-221 mini

ISBN: 978-83-65649-29-4
ISSN: 2353-2718
DOI: 10.18668/PN2018.221

Streszczenie

Podczas prowadzenia prac poszukiwawczych wytwarzane są duże ilości odpadów, które występują w postaci zużytej płuczki wiertniczej i wynoszonego przez nią urobku. Jednak podstawową ich część (ok. 60–80%) stanowią zużyte płuczki wiertnicze jako odpady płynne, natomiast pozostała ilość to odpady stałe w postaci zwiercin zanieczyszczonych płuczką oraz uwodnionych osadów usuwanych ze ściany otworu w trakcie jego rurowania. Wytworzone odpady mogą charakteryzować się szkodliwością dla środowiska ze względu na wysoką zawartość jonów chlorkowych (w przypadku płuczek o wysokim stopniu zasolenia) i siarczanowych, metali ciężkich, substancji organicznych mierzonych wskaźnikiem DOC, substancji nierozpuszczonych, rozpuszczonych związków stałych (TDS), SPCz i in.
Na podstawie szeregu przeprowadzonych w INiG – PIB badań laboratoryjnych z użyciem odpadowych płuczek wiertniczych, różniących się składem, właściwościami reologicznymi, gęstością, zawartością skażeń chemicznych, opracowano kompozycję środka do zestalania takich płuczek oraz technologię ich zestalania wraz z metodyką oceny właściwości mechanicznych, chemicznych i toksykologicznych pozyskanego półproduktu.
Proces zestalania płuczki wiertniczej jest technologicznie trudniejszy niż zestalanie urobku ze względu na jej płynną postać zagęszczoną zdyspergowanymi polimerami i cząstkami ilastymi pochodzącymi z przewiercanych warstw oraz zawierającą rozpuszczone związki chemiczne, które stosowane są do regulowania i obróbki jej parametrów technologicznych. Przy zestalaniu płuczki ważny jest dobór środków wiążących, których zadaniem jest takie przekształcenie suspensji płuczki wiertniczej w ciało stałe o odpowiedniej wytrzymałości mechanicznej, aby w jak największym stopniu ograniczyć wymywanie się z niego substancji niebezpiecznych występujących w postaci związków rozpuszczalnych.
Zestalanie różnych rodzajów zużytych, odpadowych płuczek pochodzących z otworów: A – BB (basen bałtycki) i B – BP (basen podlaski) przeprowadzono w dwóch etapach dla rozpoznania możliwości wiązania fazy płynnej płuczki w całość przy użyciu wytypowanych środków wiążących i stabilizujących, takich jak: cement, spoiwo hydrauliczno-pucolanowe zawierające dużą ilość aktywnej krzemionki – Silment CQ-25, Gruntar, szkło wodne sodowe.
Celem badań etapu pierwszego był wstępny dobór rodzaju środków wiążących określany na podstawie zmiany konsystencji płuczki otworowej przy zadawanych kolejnych dawkach danego środka i wzrostu wartości parametrów reologicznych, aż do momentu uzyskania niemierzalnych ich wartości oraz obserwacji objawów występowania odstoju wody w czasie wiązania. Natomiast podstawowym celem badań etapu drugiego był dobór optymalnej ilości wybranych środków wiążących wprowadzanych do suspensji płuczki w odpowiedniej kolejności, pod kątem ich wpływu na czas początku i końca wiązania, wytrzymałość na ściskanie zestalonej próbki płuczki oraz wymywalność z niej związków szkodliwych.
W wyniku tych badań wytypowano zestaw środków stanowiących kompozycję na bazie cementu portlandzkiego CEM I 32,5 lub spoiwa hydraulicznego – Silment CQ-25 w ilości 20–35% zawierającą 4–5% szkła wodnego sodowego na m3 płuczki. O wyborze tych środków zdecydowały ich właściwości chemiczne i wpływ na właściwości mechaniczne ciała stałego powstałego po zestaleniu płuczki otworowej. Zastosowanie wybranych środków wymagało opracowania technologii zestalania, która polegała na wprowadzeniu do płuczki w pierwszej kolejności zadanej ilości szkła wodnego, a następnie, po ok. 30 min mieszania, wytypowanych materiałów wiążących, na przeniesieniu zżelowanej jednorodnej masy mieszaniny do pojemników, gdzie przez okres od 7 do 14 dni, a nawet 28 dni, przechowywano ją w temperaturze otoczenia, prowadząc pomiary czasu wiązania, wytrzymałości na ściskanie i obserwacje próbki w czasie twardnienia.
Przeprowadzone badania wykazały, że płuczki bentonitowe łatwiej ulegają zestalaniu niż płuczki polimerowe. Wiązanie próbki płuczki bentonitowej max. zachodziło po ok. dwóch dniach, natomiast proces wiązania płuczek polimerowych trwał do ok. 6–8 dni. Początek czasu wiązania płuczki bentonitowej zestalonej przy zastosowaniu od 4% do 5% szkła wodnego i od 20% do 35% materiału wiążącego oznaczano po ok. 28 h, a koniec po max. ok. 55 h. Podczas zestalania płuczek polimerowych przy zastosowaniu tych samych ilości i rodzajów środków zestalających zaobserwowano, że ich twardnienie zachodziło najszybciej w warstwie powierzchniowej, natomiast środek próbki pozostawał niejednokrotnie w postaci wilgotnej ziemi. Wymagało to dłuższego czasu ich wiązania w celu właściwego określenia parametrów wytrzymałościowych pozyskiwanego półproduktu.
Optymalne parametry wiązania próbki płuczki bentonitowej z otworu A – BB uzyskano przy użyciu kompozycji na bazie cementu portlandzkiego CEM I 32,5 w ilości 20–30% oraz spoiwa hydraulicznego – Silment CQ-25 w ilości 20–35% z dodatkiem 5% szkła sodowego. Wytrzymałości na ściskanie tych próbek zawierających cement portlandzki CEM I 32,5 po 14 dniach wynosiły od ok. 0,5 MPa do 1,17 MPa, natomiast zawierających Silment CQ-25 od ok. 0,7 MPa do 1,0 MPa.
Proces zestalenia płuczki bentonitowej z otworu B – BP przeprowadzono przy użyciu 4% i 5% szkła sodowego oraz 5% do max. 20% materiału wiążącego. Znaczne zmniejszenie ilości materiału wiążącego w kompozycji środka zestalającego było spowodowane skażeniem tej płuczki związkami chemicznymi w postaci jonów Ca2+ – 240 mg/dm3 oraz Mg2+ – 73 mg/dm3, które pochodziły z przewiercanych warstw. Ich reakcja z materiałami wiążącymi zastosowanymi w ilości 5% i 10% spowodowała prawie 10-krotny wzrost wytrzymałości na ściskanie otrzymywanych półproduktów (1,6–3,2 MPa) w porównaniu z wytrzymałością próbek zestalonych przy użyciu tych samych materiałów w ilości 15% i 20% (0,2–0,35 MPa).W trakcie twardnienia próbek obserwowano, że bez względu na ilość zastosowanego szkła wodnego oraz ilość i rodzaj materiału wiążącego (cement CEM I 32,5 lub Silment CQ-25) objętości otrzymywanych półproduktów z płuczki bentonitowej ulegały zmniejszeniu.
Płuczki potasowo-polimerowe z analizowanych otworów o wysokim stopniu zasolenia zawierały w składach głównie środki celulozowe typu PAC o różnej lepkości w połączeniu z CMC LV, żywicę ksantanową oraz PHPA i poliglikol. Otrzymane w wyniku ich zestalenia próbki półproduktu posiadały zbliżone właściwości mechaniczne. Wartości wytrzymałości półproduktu z płuczki zastosowanej w otworze A – BB, zawierającego 4% i 5% szkła sodowego oraz 20–35% materiału wiążącego mieściły się w zakresie 0,65 MPa do 1,2 MPa, natomiast z otworu B – BP wynosiły od 0,45 MPa do 1,37 MPa. Ze względu na prawie pełne zasolenie tych płuczek podczas ich twardnienia na powierzchni próbek półproduktu zachodziła krystalizacja soli, która w większym stopniu występowała w próbkach zestalonych cementem.
W ramach oceny ekologicznej półproduktów otrzymanych z zestalonych zużytych płuczek wiertniczych przeprowadzono analizy ich odcieków otrzymanych z półproduktów zestalanych pod kątem określenia dopuszczalnych granicznych wartości wymywania takich składników jak: stałe związki rozpuszczone (TDS), rozpuszczony węgiel organiczny (DOC), zawartość metali ciężkich (arsen, bar, kadm, chrom, miedź, rtęć, molibden, nikiel, ołów, antymon, selen, cynk) oraz jonów, takich jak: chlorki, siarczany oraz fluorki, zgodnie z rozporządzeniem Ministra Gospodarki (Dz.U. z 2015, poz. 1277).
Wyniki analiz odcieku z zestalonych płuczek bentonitowych zarówno z otworu A – BP, jak i B – BP wskazywały, że zawartość poszczególnych oznaczanych składników kształtowała się na niskim poziomie i nie przekraczała dopuszczalnych granicznych wartości wymywania. Natomiast analiza fizykochemiczna odcieku wodnego z półproduktów zestalonych poszczególnymi spoiwami zasolonych zużytych płuczek potasowo-polimerowych zarówno z otworu A – BB, jak i B – BP wykazywała trzykrotne przekroczenie granicznych wartości wymywania stałych związków rozpuszczonych (TDS) oraz wysoką zawartość ogólnego węgla organicznego i jonów chlorkowych. Natomiast zawartość siarczanów, fluorków oraz metali ciężkich nie przekraczała dopuszczalnych granicznych wartości wymywania.
Odciek wodny z półproduktu zestalonych płuczek polimerowych do dowiercania zarówno z otworu A – BB, jak i B – BP cechował się niższymi wartościami wymywanych składników w porównaniu z odciekami z półproduktów zestalonych zasolonych płuczek potasowo-polimerowych.
W celu rozszerzenia oceny ekologicznej otrzymane odcieki z wymywalności szkodliwych substancji z wytypowanych półproduktów zestalonych płuczek wiertniczych pochodzących z otworu wiertniczego A – BB oraz z otworu B – BP poddano badaniom toksykologicznym z wykorzystaniem testów nowej generacji (Microtox, Ostracodtoxit, Daphtoxikit, Spirodela, Phytotoxkit), należących do różnych poziomów troficznych: konsumentów, reducentów i producentów.
Odcieki z półproduktów zestalonych bentonitowych płuczek wiertniczych zarówno z otworu A – BB, jak i z otworu B – BP cechowały się niską toksycznością i zostały zaliczone do niskotoksycznych (I–II klasa toksyczności). Natomiast odcieki z półproduktów zestalonych zasolonych płuczek potasowo-polimerowych zarówno z otworu A – BB, jak i z otworu B – BP wykazywały istotny efekt toksyczny ze względu na wysoką zawartość chlorków, substancji organicznych mierzonych wskaźnikiem DOC oraz odczyn itp., w związku z czym zostały zaliczone do III klasy toksyczności. Odcieki z półproduktów zestalonych płuczek polimerowych do dowiercania otworów, które charakteryzowały się niższą toksycznością w porównaniu z odciekami z półproduktów zestalonych zasolonych płuczek potasowo-polimerowych, zostały zaliczone do niskotoksycznych (klasa II–III toksyczności).
Jak wykazały badania, skład płuczek wiertniczych ma wpływ nie tylko na przebieg ich zestalania, ale również na toksyczność odcieków otrzymanych z półproduktów po zestaleniu tych płuczek wiertniczych. Odcieki z półproduktów otrzymane po zestaleniu kompozycją środków zestalających (szkło wodne + Silment CQ-25) płuczek wiertniczych zarówno z otworu A – BB, jak i z otworu B – BP cechowały się niższą toksycznością w przeliczeniu na jednostki toksyczności (TU) w porównaniu z odciekami z półproduktów otrzymanych po zestaleniu płuczek wiertniczych przy użyciu szkła wodnego i cementu CEM I 32,5.
Przeprowadzone badania pod kątem określenia zawartości pierwiastków promieniotwórczych (K, U, Th) wykazały, że półprodukty zestalonych zużytych bentonitowych płuczek wiertniczych zarówno z otworu A – BB, jak i z otworu B – BP posiadały najniższą zawartość pierwiastków. Natomiast najwyższe wartości tych pierwiastków promieniotwórczych (potasu, uranu, toru) odnotowano dla półproduktów zestalonych zużytych płuczek polimerowych do dowiercania. Na zbliżonym poziomie kształtowała się zawartość pierwiastków promieniotwórczych w półproduktach zestalonych zużytych zasolonych płuczek polimerowo-potasowych. Ze względu na niskie stężenie pierwiastków promieniotwórczych w zestalonych półproduktach, zgodnie z rozporządzeniem Rady Ministrów z dnia 2 stycznia 2007 r. w sprawie wymagań dotyczących zawartości naturalnych izotopów promieniotwórczych potasu 40K, radu 226Ra i toru 228Th w surowcach i materiałach stosowanych w budynkach przeznaczonych na pobyt ludzi i inwentarza żywego, a także w odpadach przemysłowych stosowanych w budownictwie, oraz kontroli zawartości tych izotopów (Dz.U. Nr 4, poz. 29), mogą być one wykorzystane jako materiały budowlane.
W celu weryfikacji skuteczności opracowanej technologii zestalania zużytych płuczek, przeprowadzono w warunkach półprzemysłowych próbę zestalania zużytych płuczek (0,75 m3). Przed przystąpieniem do wykonania próby półprzemysłowej mieszaninę płuczek otworowych poddano zestaleniu w warunkach laboratoryjnych, zgodnie z zaleceniami zawartymi w opracowanej technologii, przy użyciu kompozycji na osnowie 30% i 35% cementu CEM I 32,5 z dodatkiem 4% i 5% szkła sodowego. Na podstawie przeprowadzonych badań określono początek wiązania mieszaniny płuczek po ok. 30 h, koniec wiązania po ok. 80 h oraz wytrzymałość na ściskanie otrzymanego półproduktu, która po 7 dniach wynosiła 0,9 MPa, a po 14 dniach 1,9 MPa.
Przeprowadzone badania wymywalności substancji szkodliwych w odcieku z półproduktu wykazały następujące wartości oznaczeń: stałe związki rozpuszczone (TDS) – 58 424 mg/kg s.m., chlorki Cl – 21 300 mg/kg s.m., siarczany – 1984 mg/kg s.m., ogólny węgiel organiczny (DOC) – 3200 mg O2/kg s.m., zawartość metali ciężkich, która kształtowała się na niskim poziomie. Spośród wykonanych oznaczeń jedynie zawartość węgla organicznego (DOC) przekroczyła graniczne wartości wymywania (Dz.U. z 2015 r. poz. 1277, załącznik nr 5), co mogło być spowodowane obecnością polimerów organicznych zawartych w składach zestalonych płuczek oraz substancji ropopochodnych je zanieczyszczających. Ponadto wykonano badania toksykologiczne odcieku z zestalonego półproduktu z wykorzystaniem wytypowanych testów toksykologicznych. Toksyczność wyrażona w jednostkach toksyczności (TU) wytypowanych do badań testów wynosiła: Microtox – 4,3; Daphtoxkit (48 h) – 9,9; Spirodela – 9,5. Odciek z półproduktu można zaliczyć do niskotoksycznych (II klasa toksyczności TU < 10).
Prezentowana technologia została objęta ochroną patentową nr P.418959 pt. „Sposób zestalania zużytych wodnodyspersyjnych płuczek wiertniczych typu bentonitowego i polimerowego”, która została nagrodzona złotym medalem na międzynarodowej wystawie wynalazczości w Genewie.

Abstract

During work, large amounts of waste are generated, which occurs in the form of used drilling fluid and the excavated spoil. However, its basic part (about 60–80%) consists of used drilling fluids in the form of liquid waste, while the remaining amount is solid waste in the form of cuttings contaminated with the drilling fluid and hydrated sludges removed from the hole wall during its casing. The generated waste might be harmful to the environment due to the high content of chloride ions (in the case of highly salinated fluids) and sulphate, heavy metals, organic substances measured with the DOC index, undissolved substances, dissolved solids (TDS), surfactants and others.
On the basis of a series of laboratory tests carried out in INiG – PIB using waste drilling fluids differing in composition, rheological properties, density and chemical contamination content, a composition of a solidifying agent for such fluids and the technology for their solidification together with the methodology for the assessment of mechanical, chemical and toxicological properties of the obtained semi-finished product were developed.
The drilling fluid solidification process is technologically more difficult than the solidification of the spoil due to its liquid form, concentrated with dispersed polymers and clay particles derived from the drilled layers and containing dissolved chemical compounds, which are used for the regulation and processing of its technological parameters. When solidifying the fluid, it is important to select binding agents, the task of which is to convert the suspension of the drilling fluid into a solid body with sufficient mechanical strength in order to minimize the leaching of hazardous substances in the form of soluble compounds.
Solidification of different types of used, waste fluids coming from the holes: A – BB (Baltic Basin) and B – BP (Podlaski Basin) were conducted in two stages in order to identify the possibility of binding the liquid phase of the fluid together with selected binding  and stabilizing agents such as: cement, a hydraulic-pozzolans binder containing a large amount of active silica – CQ-25 Silment, Gruntar, sodium water glass.
The aim of the first stage of testing was to initially select the type of binding agents determined on the basis of changes in the consistency of the borehole fluid at successive doses of a given agent and increase in rheological parameters until the moment of obtaining their immeasurable values and observation of the symptoms of the presence of water loss during binding. In turn, the primary objective of stage two of the tests was to select the optimal amount of selected binding agents introduced into the fluid suspension in the appropriate order, in terms of their influence on the time of the beginning and end of binding, compressive strength of the solidified sample of the fluid and its leachability of harmful compounds.
As a result of these tests, a set of agents constituting a composition based on Portland cement CEM I 32.5 or hydraulic binder – CQ-25 Silment in the amount of 20–35% containing 4–5% sodium water glass per m3 of fluid was selected. The choice of these agents was determined by their chemical properties and their effect on the mechanical properties of the solid formedafter solidification of the borehole fluid. Application of the chosen measures required the development of a solidification technology, which consisted of the introduction of the required quantity of water glass into the fluid in the first place, and then, after about 30 minutes, mixing the selected binding materials. The gelled homogeneous mass of the mixture was transferred to containers, where it was stored at ambient temperature for a period of 7 to 14 days or even 28 days, while measurements of binding time, compressive strength were taken and observation of the sample during hardening was performed.
The conducted research has shown that bentonite fluids are easier to solidify than polymer fluids. Binding of a bentonite fluid sample took a maximum of about two days, while the process of binding polymeric fluids lasted for about 6 – 8 days. The beginning of the bentonite fluid binding time, which was solidified with the use of 4 to 5% water glass and 20 to 35% of the binding material, was determined after approx. 28 hours and the end after max. approx. 55h. During the solidification of polymeric fluids with the same amounts and types of solidifying agents, it was observed that their hardening took place most rapidly in the surface layer, while the center of the sample often remained in the form of moist soil. A longer time of binding was required in order to properly determine the strength parameters of the obtained semi-finished product.
Optimal parameters of the bentonite fluid sample binding from borehole A – BB were obtained using the composition based on Portland CEM I 32.5 cement in the amount of 20–30% and a hydraulic binder – CQ-25 Silment in the amount of 20–35% with the addition of 5% sodium glass. The compressive strength of these samples containing Portland cement CEM I 32.5 after 14 days ranged from approximately 0.5 to 1.17 MPa, while that of CQ-25 Silment – from around 0.7 to 1.0 MPa.
The process of solidification of bentonite liquid was carried out from bore B – BP using 4 and 5% sodium glass and 5 to max 20% of the binding material. Significant reduction of the binding material in the solidifying agent composition was caused by the contamination of this fluid with chemical compounds in the form of Ca2+–240 mg/dm3 and Mg2+–73 mg/dm3 ions, which were obtained from the drilled layers. Their reaction with binding materials applied in the amounts of 5 and 10% resulted in an almost 10-fold increase in compressive strength of the obtained semi-finished products (1.6 – 3.2 MPa) as compared to the strength of the samples solidified using the same materials in the amounts of 15 and 20% (0.2 – 0.35 MPa). During the hardening process, it was observed that, regardless of the quantity of water glass used and the amount and type of binding material (CEM I 32.5 cement or CQ-25 Silment), the volumes of semi-finished products obtained from bentonite fluid were reduced.
Polymer potassium fluids from the analyzed holes had a high degree of salinity and contained mainly PAC cellulose agents of different viscosity in combination with CMC LV, xanthan resin, PHPA and polyglycol. The semi-finished product samples obtained as a result of their solidification had similar mechanical properties. The strength values of the semi-finished product of the fluid used in bore A-BB containing 4 and 5% sodium glass and 20–35% of the binding material ranged from 0.65 to 1.2 MPa, while those in bore B – BP ranged from 0.45 to 1.37 MPa. Due to the almost complete salinity of these fluids, during their hardening on the surface of the samples of semi-finished products there was crystallization of salt, which was more common in cement solidified samples.
As part of the environmental assessment of semi-finished products obtained from solidified used drilling fluids, leachates from solidified semi-finished products were analyzed to determine the limit values for leaching of such components as: dissolved solid compounds (TDS), dissolved organic carbon (DOC), heavy metals (arsenic, bar, cadmium, cadmium, chromium, copper, mercury, molybdenum, nickel, lead, antimony, selenium, zinc) and ions such as chlorides, sulphates and fluorides according to the Regulation of the Minister of Economy (Journal of Laws from 2015, item 1277).
The results of the leachate analysis from solidified bentonite from both the A – BP and the B – BP hole was found to contain low levels of the determined ingredients and did not exceed the limit leaching values. On the other hand, the physicochemical analysis of water leachate from the semi-finished products solidified with individual binders of used salinated potassium-polymer fluids from both boreholes A – BB and B – BP showed three times higher leaching values of solid dissolved compounds (TDS) and a high content of total organic carbon and chloride ions. In contrast, the content of sulphates, fluorides and heavy metals did not exceed the leaching limit values.
The water effluent from the semi-finished product of solidified polymer fluids used for drilling from boreholes A – BB and B BP was characterized by lower values of leached components in comparison with leachate from solidified semi-finished products of salinated potassium-polymer fluids.
In order to extend the ecological assessment, leachate from the leaching of harmful substances from selected semi-finished solidified drilling fluid products from borehole A – BB and from borehole B – BP, was subjected to toxicological examinations using new generation tests (Microtox, Ostracodtoxit, Daphtoxikit, Spirodela, Phytotoxkit) belonging to various trophic levels: consumers, reducers and producers.
The effluents from semi-finished solidified bentonite drilling fluids from both borehole A – BB and borehole B – BP were of low toxicity and were classified as low toxic (I – II toxicity class). On the other hand, leachate from semi-finished solidified products of salinated potassium-polymer fluids was found to have a significant toxic effect due to high content of chlorides, organic substances measured by DOC and reaction, etc. and in connection with this they were given the III toxicity class. Leachate from semi-finished products of solidified polymer fluids for drilling holes, which were of a lower toxicity compared to leachate from semi-finished products of solidified salinated potassium-polymer fluids and were classified as low toxic (toxicity class II – III).
Research has shown that the composition of drilling fluids not only influences their solidification process, but also the toxicity of leachate from semi-finished products after solidification of these drilling fluids. Leachate from the semi-finished products obtained after solidification with a composition of solidifying agents (water glass + CQ-25 Silment) of drilling fluids from both borehole A – BB and borehole B – BP were characterized by lower toxicity in TU (toxicity units) compared to leachate from semi-finished products obtained after solidification of drilling fluids with water glass and CEM I 32.5 cement.
Studies carried out to determine radioactive element content (K, U, Th) have shown that semi-finished products of solidified bentonite drilling fluids from both borehole A – BB and borehole B – BP had the lowest radioactive element content (potassium, uranium, thorium). In contrast, the highest values of radioactive elements (potassium, uranium, thorium) were recorded for semi-finished products of solidified used polymer drilling. The content of radioactive elements in semi-finished products of solidified used salinated polymer and potassium fluids was at a similar level. Due to the low concentration of radioactive elements in solidified semi-finished products according to the Regulation of the Council of Ministers of 2 January 2007 concerning requirements for the content of natural radioactive isotopes of potassium K-40, radium Ra- 226 and thorium Th-228 in raw materials and materials used in buildings for intended humans and livestock and industrial waste used in construction, and the control of the content of these isotopes (Journal of Laws of Laws No. 4, item 29), they may be used as building materials.
In order to verify the effectiveness of the developed technology of solidifying used drilling fluids, an attempt was made to solidify used drilling fluids (0.75 m3) in semi-industrial conditions. Prior to the semi-industrial test, the borehole fluid mixture was solidified under laboratory conditions, in accordance with the recommendations of the developed technology, using a composition on a 30 and 35% CEM I 32.5 cement carcass with the addition of 4 and 5% sodium glass. On the basis of the conducted tests, the beginning of binding of the mixture of fluids was determined after approx. 30 h, the end of binding after approx. 80 h, and compression strength of the obtained semi-finished product was determined, which after 7 days was 0.9 MPa, and after 14 days – 1.9 MPa.
The test of leaching of harmful substances in the leachate from the semi-finished product showed the following values of determinations: solid dissolved compounds (TDS) –58 424 mg/kg d. m., Cl-chlorides – 21 300 mg/kg d. m., sulphates – 1 984 mg/kg d. m., total organic carbon (DOC) – 3 200 mg O2/kg d. m., heavy metal content, which was at a low level. Of the performed determinations, only organic carbon content (DOC) exceeded the leaching limit values (Journal of Laws of 2015, item 1277, Appendix no. 5), which may have been caused by the presence of organic polymers contained in solidified fluids and petroleum substances contaminating them. In addition, toxicological studies of leachate from the solidified semi-finished product were performed using selected toxicological tests. The toxicity expressed in TU units of the tests selected for the research was as follows: Microtox – 4.3; Daphtoxkit (48 h) – 9.9; Spirodela – 9.5. Leachate from the semi-finished product may be classified as low toxic (toxicity class II TU < 10).
The presented technology has been granted patent protection No. P. 418959 under the title “The method of solidification of used water dispersion bentonite and polymeric drilling fluids”, which was awarded with a gold medal at the international exhibition of inventions in Geneva.
  

Cena egzemplarza:60 zł netto (plus 5% VAT)

Koszt przesyłki: 5 zł brutto za sztukę – list polecony

Zamówienia prosimy składać e-mailowo: nafta-gaz@inig.pl lub telefonicznie 12 617 76 32.