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Algorithm MG(F-K) of migration in model TTI

anisotropy

Introduction

One of the most frequently encountered models in
anisotropic medium is the model of Transverse Isotropy
(TI). If the symmetry axis of model TI coincides with
the vertical axis of right-angle coordinates, then we
receive horizontal thin-layered system proposed by
G. Postma [12] and called VTI (Vertical Transversely
Isotropic). The application of algorithms of propaga-
tion and migration of ,,isotropic” waves in anisotropic
medium VTI results in deformations and relocation
of reproduced structures [6, 10], and the higher the

anisotropic parameters are, the greater their extent is.
(parameters by L. Thomsen [14]).

In the domain of wavenumbers and frequencies, the al-
gorithm of migration MG(F-K)) was presented in anisotropic
medium type VTI [11]. This algorithm uses approximative
version of vertical wavenumber [5] with reference to me-
dium VTL This article presents the algorithm of migration
MG(F-K) in monoclinal medium marked as TTI (7ilted
Transversely Isotropic) model, whose symmetry axis is
tilted at 6 angle to the vertical axis (Fig. 1).

Algorithmic solutions

In case of a thin-layered arrangement, arbitrarily
oriented in relation to the Cartesian coordinate system
X, y, z, it is appropriate to use general law of tensor rotation
in Bond's formulation [2, 3, 13] which allows to obtain
relation between matrix D*’ of elastic modules in measur-
ing coordinate system x, y, z, and appropriate matrix C of
these modules in coordinate system x’, y’, z".

The is the ensuing relation:

D" = R, CR() ()

where ¢ denotes the angle of rotation of system x’, y’, z’
with regard to axis z, whereas 6 is the tilt angle of the
symmetry plane of isotropy TIL.

The dimensions of matrices R, and R;g are 6 x 6 and
they transform the matrix of elastic modules C into sym-
metric matrix D?’. Matrices R,, and qu‘g transpose the
vectors of stress and strain from system x’, y’, z” to system
X, y, z by means of rotational matrix:
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Fig. 1. Geometrical model of monoclinal thin-layered
system, angle 6 is the tilt angle between axis x” and
horizontal plane. Rotation angle ¢ of system x’, y’, z’
towards the axis is 90°
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The subject of discussion will be the situation when the
rotation angle ¢ = 90°, i.e. when the coincidence of axis
yand y’occurs (Fig. 1). Then, similarly as for the medium
VTI [4] the shear waves of type SH may be separated from
longitudinal waves P and shear waves SV. It means that
displacements U, of oscillating particles of the medium
towards axis y are independent from displacements U, and
U, in directions x and z respectively. Thus, only compo-
nents U, and U, can be discussed, assuming that U, and
its derivatives equal zero.

Symmetrical matrix C, dimensions 6 x 6, represents
components of tensor C,;, in the medium of transverse
isotropy TI. In abbreviated notation by Voigt [14] this
matrix can be presented in this way:

Cll C12 C13 0 0 O
C12 Cl 1 C13 0 0 0
C — C13 C13 C33 0 0 O (3)
0o 0 0 C, 0 0
0O 0 0 0 C, O
0 0 0 0 0 C,

Matrix D**"” =D (omitting indices ¢ and 6) in dis-
cussed case may be presented in the following way:

dll d12 dl3 O dlS O
d21 d22 d23 O d25 O
D — d}l d32 d33 O d35 O (4)

0 0 0 d, 0 d,
d53 0 d55 0
0 0 0 d, 0 dg

=N

and the elements can be expressed by means of components
of tensor Cy, (in Voigt's notation) and the tilt angle 6 as
follows:

d,,=C,,cos* 0+2C,;cos*Osin’ § + Cy;sin’ O +
+4C,,(sinfcos ) %)

dy =d;,=C,c08*0+C,;sin*0 6)

dy=d,;=(C,,cos* 0+ C,;sin*0) sin* 0+ (C\; cos* O+
+ Cj;sin? ) cos? 0—4C,, sin’ O cos* 0 @)

ds,=d,s=[C,;c08’ 0+ C,,;sin’ 0—C,, cos’ O—
— C,;sin*0+2C,, (cos’ O—sin® O—
—sin*6)]sin fcos O (8)

d,=C, )
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d;,=d,,=C,sin* 0+ C,;cos 0 (10)
dy;=dsy=(Cp;—C,)sinfcos b (11)

d;;=(C,,sin* 0+ C\;cos’0) sin* O+ (C,;sin” 6+
+Cy;c08%0) cos’ 0+4C,, sin’ O cos’ 0 (12)

dy;s=d;=[C,;sin* 0+C,; cos” O—C,, sin” O—
—~C;c08*0—-2C,, (cos’O—sin*H)]sin Ocos §  (13)

d,,=C,,c082 0+ Cysin* 0 (14)
dy=de,=(Cpy—Cgy)sinfcos 6 (15)
dys=(C,,—2C;+C;;)sin’ Ocos® O +C,, (cos” O—sin’ O)* (16)
dg=C,,51n* 0 + Cysc08’ O (17)

and other remaining components are equal zero.
For small tilt angles, when 6 — °0 we have:

d,—C,
d,=d, —>C,
di;=dy—>Cy
ds;=d,s—>0
dy=dy,—>Cy
dys=ds;—>0
dyy— Cyy (18)
dys=ds;—>0
dy—>Cy
dy=dg—0
dss— Cy
dgs— Cos

So for small tilt angles @ — 0, as expected, matrix

0—-0

The initial point in the discussion on construction of
algorithmic solutions will be Hook's law — basic relation
between the tensor of stress 7}; and strain £, which results
in a conclusion that each stress component is a linear func-

tion of strain, i.e.:

T, = d‘/klEkl = difk/Elk (20)

y Y

While the tensor of strain is
1
Elk = E(Ul,k +Uk,l) (21)

Presenting the relation (20) in detail, we receive:



T;'/' = difllEl 1 +dg/22E22 +dg/33E33 +2dij23E23+
Jr2dg;13E13Jrquylelz (22)

Substituting i,j = 1, 2, 3, we obtain all the components
of stress tensor: Ty, Ty, Ts3, To3= Ty, T13= T3, T1,=T>,.
In the matrix notation this is as follows:

2E,=2E_=U,. =0 (23)

2E,=U,, =0

In relation (23) it has been considered that derivatives
of the field with regard to coordinate y equal zero. Start-
ing with the general law of movement (disregarding the
external force)

o°U,
L, =p o (24)

where p is the medium density, and # denotes time, let
us write equations for the horizontal U (U,) and vertical
U(U,) component

o’U

Ty, +T5,=p 61‘21 (252)
o°U,

Ly +Tss=p o (25b)

Using the matrix equation (23) with relation to equa-
tions (25), the following relations are received:

dllUx,x_x + dSSUx,zz + 2dlSUx,xz + dlSUz,xx +
2
+ (dl3 + d55 )Uz,zx + d53Uz,zz: p aagx (263)
dSIUx,xx + (d31 + d55 ) Ux,xz + d35Ux,zz + d33Uz,zz +
o’U
+ 2d35Uz,xz + dSSUz,xx = p a[zz (26b)

Adopting for small tilt angles 6d,;=d;; =0 and
ds;=d;s=0 and applying Fourier's transformation
(x > k,z— k,t > w) z for equations (26) we obtain matrix
equation analogical to Christoffel's relation:

(d13 + d55 )kxkz
d33k22 + dsskj - pwz

UX

d k*+d..k* — pw*
(11x+552 PO U:0 @7)

(d3l + dSS )kxkz

artykuty

In equation (27), k, and &, denote wavenumbers in
horizontal and vertical direction, whereas w is frequency.

It should be noted that matrix equation (27) for medium
VTI, i.e. in the case when the tilt angle =0 transforms into
analogical equation derived by Q. Han and R.S. Wu [5].
Equation (27) results in dispersion relation

bk 4 bk 4 b, =0 (28)
where:
bo = d33d55
b = kf(d11d33 - d123 - 2d11d55)_ pwz (d33 + dss)
b, = k::dlldSS - pa)z(d“ +dss )kf + pza)4 (29)

In general, equation (28) has four solutions correspond-
ing to longitudinal wave qP and shear wave qSV (polarized
in plane x-z) forward and backward propagation. Q. Han
and R.S. Wu [5] concluded on the basis of numerous experi-
ments that wave velocity qSV does not provide significant
contribution in the quantity of vertical wavenumber of
longitudinal wave qP, therefore it can be assumed that
velocity of wave qSV equals zero [1]. On assumption that
b, =0, we receive:

blr = k,f (d11d33 - d123)_ pa)zd33
b, = p’e' - pw’d, k; (30)

Let expressions b, and b, be represented by parameters
analogical to Thomsen's, i.e.:

&= dll_d33 (31)
2d,

(d13 + dss )2 - (dss - dss )2

0= (32)
2d33 (dss - dss)
hence
g=1+2¢&= @
d33
and for ds =0
2
1+20= d—‘;

33

Assuming that the velocity of longitudinal wave

12
v, = (C”J a dy; = Cy;c05°0 we receive:
Yol

dyy = pV; cos’0=pV, (33)
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Similarly, using parameters ¢ and ¢g=1+2¢ and
n=2(e—0) we have:

dydy, =(1+26)d3, = qp’V}icos' O0=qp’V} (34)

where: V,, =V, cos 6 denotes the velocity of longitudinal
wave along the vertical axis

dy =(1+20)d3, =(1+20)pV,, 35)

d,=[+2¢)pV) (36)
From relation (29) and relations (30)-(35) we obtain
the expression for vertical component of wavenumber £,

o (S —asion )" (37)
z 200% — k2
Spa) nk;

where: §, = € denotes vertical slowness.
p
It is not difficult to notice that parameters g and # which
can be seen in expression (37) are represented by their
values in model VTI, therefore for horizontally laminated
medium

q9=4vm" cos’ 0

n=nyrm- cos’ 0 (38)

where: ¢, and 77,,, denote the values of these parameters
in VTT medium.

Thus relation (37) for medium TTI is analogical to
the relation derived by Q. Han and R.S. Wu [5] for the
horizontally laminated medium VTI. In order to use it in
the process of propagation and migration of compressional
waves one should know parameters ¢ and 7, the velocity
of P waves along the axis and the tilt angle — 6, the plane
of isotropy. We will apply received wavenumber £k, for

migration MG(F-K) in the domain of wavenumbers and
frequencies and spatial coordinates x and time # [8, 11].
Migration process performed in this way occurs in two
stages. At the first stage, the relocation of the wave field
takes place

Uk, z,+Az,0)= e Ulk,,z,0)  (39)

from the level of z; to z; + Az by means of exponential
operator with vertical wavenumber kz, corresponding to
a homogeneous medium. At the second stage, correc-
tion of the wave field follows U'(x, z; + Az, @) — Fourier
transforms (k, — x) of the field U'(k,, z; + Az, ) by way
of spatial filter F(x, w) = [1 — i/2AzM,,]"', which is the
sum of Neumann’s power series

-2 ) ik (40)
M =Sk (k2 — k2 )™k,
This relation may be represented in this way:

Ujin, T=Fi(x, ©)U'(x, z; + Az, ©) 41)

The correction positions the wave field in the function
of spatial coordinates, taking into account the differences
between parameters of a homogenous medium and para-
meters of heterogeneous medium in the function of lateral
coordinates. For the prestack migration, the algorithm of
extrapolation will be the product of corrective functions
F related to the sources and receivers, while corrected
field U’ will be a function of coordinates of sources and
receivers. With the zero-offset migration in relation (37)
slowness S, must be multiplied by 2. Further steps follow
in an analogical way as in model VTI and it was discussed
in detail in the article by A. Kostecki [11]. It should be
noted that even when the elastic parameters are indepen-
dent from the spatial coordinates, it is essential to take into
consideration the differences in vertical wavenumbers as
a result of different tilt angles of the laminated medium.

Artykul nadestano do Redakcji 17.09.2009. Przyjgto do druku 29.10.2009.

Literature

[1]7 Alkhalifah T.: Acoustic approximation for processing in
transversely isotropic media. Geophysics, 63, 623-631,
1998.

[2] Auld B.A.: Acoustic fields and waves in solids. Krieger
Publishing Company, vol. 1, 2, 1990.

[3] Bansal R., Sen M.: Finite — difference modelling of S-wave
splitting in anisotropic media. Geophysical Prospecting
56,293-312, 2008.

[4] Crampin S., Chesnokov E, Hipkin R.: Seismic anisotropy
— the state of the art. Geophys. J. Roy. Astr. Soc., 76, 1-16,
1984.

8 nr 172010

Recenzent: dr Anna Polchiopek

[5] Han Q., Wu R.S.: 4 one-way dual domain propagator
for scalar gP waves in VTI medium. Geophysics, vol. 70,
D9-D-17, 2005.

[6] Issack I., Lavton D.: A practical method for estimating
effective parameters of anisotropy from reflection seismic
data. Geophysics, vol. 69, 681-689, 2004.

[7] Jianlin Zhu, Ji Dorman: Two-dimensional, three-component
wave propagation in a transversely isotropic medium with
arbitrary orientation — finite — element modeling. Geophy-
sics, vol. 65, no 3, pp. 934-942, 2000.

[8] KosteckiA., Potchtopek A.: Seismic migration before sum-



[10]

[11]

[12]

ming up the wavefield in a medium with lateral velocity
heterogeneities. Studies by Oil and Gas Institute, no 94,
1998.

Kostecki A., Potchtopek A.: Stable depth extrapolation of
seismic wavefields by Neumann series. Geophysics, 63,
2063-2071, 1998.

Kostecki A., Potchtopek A.: 4 study of structural repro-
duction in anisotropic medium VTI. Prace INiG, no 137,
pp. 39-60, 2006.

Kostecki A.: Algorithms of depth migration in anisotropic
medium VTI. Nafta-Gaz, no 11, 661-666, 2007.

Postma G.M.: Wave propagation in a stratified media.
Geophysics, vol. 20, no 4, 1955.

artykuty

[13] Schoenberg M.A.: Seismic characterization of reservoirs
containing multiple fracture sets. Geophysical Prospecting,
vol. 57, no 2, pp. 169-186, 2009.

[14] Thomsen L.: Weak elastic anisotropy. Geophysics, vol. 51,
1954-1966, 1986.

Andrzej KOSTECKI — Professor of geophysics.
The main subject of interest — electromagnetic and
seismic wave propagation, reproduction of deep
geological structures by means of seismic migra-
tion, the analysis of migration velocities, seismic
anisotropy. The author of 130 publications.

(

— maksymalne wymiary gabarytowe:

— maksymalny cigzar:

— ciecz robocza:

— maksymalne ci$nienie badania:

— maksymalna temperatura badania:

— ogrzewanie posrednie w ptaszczu olejowym,
— rejestracja ciagla ci$nienia i temperatury,

Kierownik: mgr inz. Antoni Frodyma
Adres: ul. Bagrowa 1, 30-733 Krakow
Telefon: 12 653-25-12 wew. 137
Faks: 12 653-16-65

E-mail: antoni.frodyma@inig.pl

o

o

dlugos¢
Srednica

ZAKLAD TECHNIKI STRZELNICZEJ INiG W KRAKOWIE

OFERTA NA WYKONYWANIE BADAN ODPORNOSCI CISNIENIOWEJ | TERMICZNEJ URZADZEN

Oferujemy wykonywanie badan odpornosci cisnieniowej urzadzen w warunkach podwyzszo-
nej temperatury i w temperaturze otoczenia na stanowisku termobarycznym INiG w Krakowie.

1850 mm

140 mm

100 kG

olej Iterm SMb
120 MPa
180°C

— mozliwe wykonywanie badan ,,do zniszczenia” w przypadku urzadzen o niewielkiej objetosci,
— mozliwos¢ wyprowadzenia sygnatu elektrycznego z badanego urzadzenia linig 2-przewodowa.
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